Stopping the Spread:

Peach Tree Disease
Group 76: Allison Fister, Fletcher Wells, Mihir Gandhi, Shoale Badr

Git Repository:
https://github.gatech.edu/mgandhi39/Tree-Disease-Spread-Cellular-Automata

Video Submission:
https://youtu.be/WGLxum7YXLg

https://github.gatech.edu/mgandhi39/Tree-Disease-Spread-Cellular-Automata
https://youtu.be/WGLxum7YXLg

Abstract

We propose a system that models the spread of disease throughout the branches of an
individual fruit tree and determines the “optimal” shape to which a tree should be pruned in
order to minimize the spread of disease. Our system is unique because of its scope; while many
cellular automata (CA) models simulate the spread of disease between distinct individuals, we
model infection between different parts of a single entity. This system consists of four major
parts: (1) individual tree generation in a grid space, (2) a CA representation to model the spread
of disease, (3) visualization of this model, and (4) optimal tree shape analysis. Ultimately, we
hope that our model can serve as a novel computational approach to making tree maintenance
decisions and can provide general insight into prevention of tree-borne disease.

Project description

Pruning a tree is imperative to maintaining the tree’s health, protecting nearby people and
property, and promoting fruit production (Douglas). It is an especially important task for orchard
farmers and others who seek to maximize both the quantity and quality of a tree’s output.

There are many known pruning patterns and shapes of fruit trees commonly used in agricultural
settings. Below are some notable tree shapes:

Fruit tree shapes

s’

———t e ——
Standard Cordon Bush Pyramid

T ==

Fan Espalier Step-over-

Tree Shape

Standard

Cordon

Bush

Pyramid

Fan

Espalier

Step-over

Description

Similar to bush shape, but much taller. Harder to maintain and prune.
Bears lots of fruit, but takes a long time to mature.

Single stem tree pointing at a 45 degree angle. Bears fruit early.
Doesn't bear much fruit.

Easy to maintain and prune. Often used for apple trees. Bears fruit at
a young age.

Similar size as bush. All branches stem from central branch or trunk.

Has a short trunk with straight branches coming out in a circular
pattern.

Has a short trunk with three or four horizontal branches on either
side.

A foot tall espalier tree with two branches.

And here are some varieties of disease that threaten fruit trees, specifically peach trees:

Disease

Blossom Blight

Phytophthora Crown
Root Rot

Armillaria Root Rot

Description Symptoms

Occurs when a tree is about to Drooping blooms, tan
bloom. Quickly spreads from blossoms, or gummy-like
blooms to branches and leaves. branches

Occurs when there is poor Reduced tree growth,
drainage in the soil. Begins in the loss of leaves, death of
roots. tree

Similar to Phytophthora Crown Wilting foliage, death of
Root Rot. Spreads through soil. tree

Attacks tree roots. Causes
mushrooms to grow at the base of
the tree.

Peach Leaf Curl Occurs in spring when the weather
is cool and damp.

Peach Scab Likely too late to treat once it
appears in the tree.

Peach Mosaic Virus Spread by mites.

Spider Mites Feed on tree foliage.

Curling leaves, loss of
leaves and fruit

Makes peach appear to
have black scabs

Makes leaves appear to
have a mosaic pattern

Silk webs spread
throughout branches,
loss of leaves

We hope that in capturing the spread of disease throughout trees of different shapes, our model
can be used to inform pruning decisions by computing the shape that best mitigates the spread

of this disease.

We will also attempt to model the immune response of a tree. This immune response is known
as the compartmentalization of decay in trees (CODIT). Once a tree cell becomes infected, the
tree does not attempt to save the infected cell. Instead, the tree tries to isolate the infected cell
from the rest of the healthy cells. It has a rather intricate process to do this. It strengthens cell
walls around the decay, then puts up specific barrier walls to prevent further spread, and then
finally new growth is able to grow around the barrier walls. This process is what caused knots in
wood or large hollowed out trees that are still alive. See the image below to get an idea of what

this looks like (Shigo).

Literature review

Huang et. al's paper (2012) discusses the implementation of cellular automata (CA) to model
the spread of pine wilt disease (PWD), simulating the impacts of neighborhood size and
deforestation rate on its severity. The authors choose a two-dimensional raster type for the
lattice structure (10m x 10m grid), five vegetation types representing cell states, and a transition
function using a yearly time-step. Their case study simulating neighborhood size and
deforestation rate on the spread of PWD is highly effective, showcasing that PWD’s strength is
correlated with the range of the neighborhood and concludes that a deforestation rate of 60%
would be effective in stopping the spread of PWD. Although they state that their CA model
should be improved in their transition function, we can use a similar approach (in terms of the
CA model) at a smaller scale. Instead of neighborhoods of trees, we will examine
neighborhoods of individual fruit tree branches using a shorter time-step.

Anderson and Dragicevic (2016) implement a more complex model involving geographic
information systems (GIS), multi-criteria evaluation (MCE), and CA to investigate the infestation
of the emerald ash borer (EAB), a type of jewel beetle, on ash trees in North America. This was
done to overcome the limitations of previous EAB simulations, which use traditional statistical
approaches that often do not address the true spatiotemporal complexity of these infestations.
Their simulations take into consideration several types of data, both traditional and hypothetical,
ranging from tree distribution to weather and meteorological data, resulting in the components of
their model composition—tree susceptibility, spatial dynamics, landscape scenarios, and climate
scenarios. Their results validate that their model provides a framework for the representation of
EAB infestation as a non-linear, complex system, and show that urban landscapes in particular
are quite susceptible to infestation. The authors prove this with a lack of data, and their model
has the potential to be used in several “what-if" scenarios. Our model is similar; as there are few
studies simulating the spread of disease across individual fruit tree branches, we must rely on
hypothetical data at this point in time.

Gronewold and Sonnenschein (1997) give an example for the modeling of ecological systems
with cellular automata based on the description of cell's behavior by Petri nets. This study was
done in order to overcome the disadvantages of individual-oriented models, which are difficult to
analyze using mathematical methods and are generally defined in an informal way. Petri nets
are a formal modeling technique with event-based, concurrent, asynchronous state changes
where graphical symbols are used for the description of states' respective state changes. This
allows for the formal description of cellular automata with asynchronous cells' behavior within
one synchronous time phase of the automaton (i.e., within one time phase of the whole
automaton, many asynchronous “mini-steps' of cells can appear). An obvious advantage of this
technique is the graphical representation that allows us to describe systems in a detailed but
clear manner. Furthermore, a system modeled by a Petri net has formal semantics such that the
interpretation of the system description cannot be ambiguous. Gronewold and Sonnenschein
then look for a special description language for ecological systems based on Petri nets so that
an easy modeling and quick simulation of ecological systems will be possible. They claim that
modelers should be able to define only the behavior of one cell, the way of communication

between cells, and the necessary synchronization points. After having made these definitions,
the tool should be able to generate the structure of the cellular automaton automatically.

The main difference between our project and the work outlined in these articles is the scope of
our simulation. Rather than modeling the spread of disease among individual entities, we are
modeling the spread of disease among different parts of a single entity, our entity being a fruit
tree.

Conceptual model

The basic conceptual model involves modeling disease spread using a cellular automata
system. We plan to procedurally create a bunch of trees, run the CA model on the trees for a
certain number of trials and steps, and find the optimal shape of the tree based on a scoring
metric, which we defined as the percentage of infected or dead tiles over the total number of
tree tiles. This metric can be described by the following equation:

(# infected tiles) + (# dead tiles)
(# infected tiles) + (# dead tiles) + (# healthy tiles)

Score =

We will represent the tree by a NxN grid, in which each contains an integer representing the
state of that cell. The tree can be thought of as the cells in the grid that do not have a state of
empty.

Here we are assuming that the tree can be modeled by a 2D drawing of a tree. We further
assume that the tree model can be discretized into pixels. We will see that this 2D assumption
may affect how closely our CA model resembles how plants fight viruses.

We created our model with eight total states. These states are as follows: [EMPTY, HEALTHY,
INFECTED, DEAD, BARRIER_CELL, WALL_CELL, AIRBORNE_INFECTED,
AIRBORNE_DEAD]. The states INFECTED and DEAD are meant to model the disease. The
state HEALTHY corresponds to healthy tree wood. The states AIRBORNE_INFECTED and
AIRBORNE_DEAD are intended to allow the disease to spread to adjacent branches. It can be
thought of as the disease being transmitted through the air by some means. The states
BARRIER_CELL and WALL_CELL are meant to model the CODIT immune response of the
tree, where the BARRIER _CELL acts as a buffer in which disease travels slower, and
WALL_CELL acts as a wall to prevent infected cells from spreading entirely.

We created the transition rules to model the spread of decay and the tree's immune response to
it to resemble the real life process of CODIT as best we could given the 2D constraints. Two
diagrams of these transition rules are listed below as well as the rules.

EMPTY -> AIRBORNE_INFECTED "when cell has INFECTED neighbor and
diceRoll(EMPTY_TO_AIRBORNE_FROM_INFECTED)"

EMPTY -> AIRBORNE_INFECTED "when cell has AIRBORNE_INFECTED neighbor
and diceRoll(EMPTY_TO_AIRBORNE_FROM_AIRBORNE)"

EMPTY -> WALL_CELL "when cell has WALL_CELL neighbor and has DEAD or
INFECTED neighbor"

AIRBORNE_INFECTED -> AIRBORNE_DEAD "when cell has neighbor
AIRBORNE_DEAD"

AIRBORNE_INFECTED -> AIRBORNE_DEAD "when cell has no INFECTED neighbor
and has DEAD neighbor"

AIRBORNE_DEAD -> EMPTY

HEALTHY -> INFECTED "when cell has INFECTED neighbor and
diceRoll(HEALTHY_TO_INFECTED_PROB)"

HEALTHY -> BARRIER_CELL "when cell has INFECTED neighbor and diceRoll(1 -
HEALTHY_TO_INFECTED_PROB)"

HEALTHY -> WALL_CELL "when cell has no INFECTED neighbor and has
BARRIER_CELL and has WALL_CELL"

HEALTHY -> WALL_CELL "when cell has no INFECTED neighbor and has
BARRIER_CELL and diceRoll(HEATLHY_TO_WALL_FROM_BARRIER)"
HEALTHY -> BARRIER_CELL "when cell has no INFECTED neighbor and has
BARRIER_CELL"

HEALTHY -> INFECTED "when cell has AIRBORNE_INFECTED neighbor and
diceRoll(HEALTHY_TO_INFECTED_FROM_AIRBORNE)"

INFECTED -> DEAD "when cell has no HEALTHY neighbor and
diceRoll(INFECTED_TO_DEAD_PROB)"

e BARRIER_CELL -> INFECTED "when cell has INFECTED neighbor and
diceRoll(BARRIER_TO_INFECTED_PROB)"

Here is also a code snippet of the rules that get applied to each cell. The variable "value" is the
initial value of the cell. The variable "nextValue" is the next value of the cell. The variables with
the structure "numX" correspond to the number of cells of state "X" within the current cell's
Moore neighborhood.

1 HEALTHY TO_INFECTED PROB = 0.5

2 HEATLHY TO WALL FROM BARRIER = 0.1
3 INFECTED_TO_DEAD PROB = 0.05

4 BARRIER_TO_INFECTED PROB = 0.5

5 EMPTY TO AIRBORNE FROM INFECTED = 0

6 EMPTY TO_AIRBORNE FROM AIRBORNE = 0.175
7 HEALTHY TO_INFECTED FROM AIRBORNE = 0.05

8

9 def rollDice(winProbability):

10 return np.random.rand() < winProbabilitﬂ

11

12 if value == State.EMPTY:

13 if numInfected > 0 and rollDice(EMPTY_ TO_AIRBORNE_FROM_ INFECTED):

14 nextValue = State.AIRBORNE_ INFECTED

15 elif numAirborneInfected > 0 and rollDice(EMPTY TO AIRBORNE FROM AIRBORNE):
16 nextValue = State.AIRBORNE_INFECTED

17 elif numWallCell > 0 and (numDead > 0 or numInfected > 0):

18 nextValue = State.WALL CELL

19 elif value == State.AIRBORNE_INFECTED:
20 if numAirborneDead > 0:

21 nextValue = State.AIRBORNE_DEAD

22 elif numInfected <= 0 and numDead > 0:
23 nextValue = State.AIRBORNE_DEAD

24 elif numWallCell > 0:

25 nextValue = State.AIRBORNE DEAD

26 elif value == State.AIRBORNE_ DEAD:
27 nextValue = State.EMPTY

28 elif value == State.HEALTHY:

29 if numInfected > 0:

30 if rollDice(HEALTHY TO_ INFECTED_ PROB):

31 nextValue = State.INFECTED

32 else:

33 nextValue = State.BARRIER CELL

34 elif numBarrierCell > 0:

35 if numWallCell > 0:

36 nextValue = State.WALL CELL

37 elif rollDice(HEATLHY TO WALL_FROM BARRIER):
38 nextValue = State.WALL CELL

39 else:

40 nextValue = State.BARRIER CELL

41 elif numAirborneInfected > 0 and rollDice(HEALTHY TO_INFECTED FROM_AIRBORNE):
42 nextValue = State.INFECTED

43 elif value == State.INFECTED:

44 if numHealthy <= 0 and rollDice(INFECTED_TO_DEAD_PROB):

45 nextValue = State.DEAD

46 elif value == State.BARRIER CELL:

47 if numInfected > 0 and rollDice(BARRIER_TO_INFECTED PROB):
48 nextValue = State.INFECTED

We modeled many transitions using probabilities. The values of these probabilities are given
above and were mostly chosen based on educated guesses, trial and error, and the sparse data
we had available regarding how decay spreads in trees. Field research is likely needed to make
these values more closely resemble the real life process. For the time being, we decided on a
time step of one day.

Simulation
Tree Generation

We use the GenProcTrees package to procedurally generate trees. It makes use of the “Space
Colonization Algorithm” to create lifelike trees.

A common way to generate trees is using L-systems. An L-system or Lindenmayer system is a
parallel rewriting system and a type of formal grammar. An L-system consists of an alphabet of
symbols that can be used to make strings, a collection of production rules that expand each
symbol into some larger string of symbols, an initial "axiom" string from which to begin
construction, and a mechanism for translating the generated strings into geometric structures.
With L-Systems, we can get some interesting looking trees, which typically start from the root,
and generate branches based on a set of rules. The Space Colonization algorithm takes a
different approach to the problem. Instead you first create the leaves, which serve as attraction
points for the branches. Over each iteration, the branches grow closer and closer towards the
leaves. In this manner, you end up having tree branches that appear to have grown towards
some light source.

The algorithm works as follows:

1. Define an area for the crown of the tree. In our examples, we are using Rectangles,
but any shape can be used.

2. Populate the defined area with attraction points (i.e. leaves).

3. Create the trunk of the tree, by adding Branches below the defined area. Keep
growing branches upwards until the MaxDistance between a Leaf and a Branch is
reached. This MaxDistance is a parameter that defines how far a Leaf can be to
attract a Branch. A Branch is not affected by Leaves that are further away than
MaxDistance.

4. Process the Leaves by comparing it to all the Branches. Calculate the direction and
distance from the Leaf to the Branch. If the distance is smaller than MinDistance, we
remove the Leaf for it has been reached. If the distance is greater than MaxDistance,
we ignore it, since it is too far. Otherwise, we check if the Branch is the closest
Branch to this Leaf. Each Leaf can only affect 1 Branch at a time.

5. Once the closest Branch is determined, we increment the GrowCount of that Branch,
and add the direction of the Leaf to the GrowDirection of the Branch. If multiple
Leaves attract a branch, then the GrowDirection will be an average of all of the Leaf
directions.

6. Now loop through the Branches, and process any Branch with a GrowCount > 0.
Divide the GrowDirection by the GrowCount, to get the average direction, then
create a new branch with this GrowDirection, linking it to the Branch being processed
as its parent. Then reset the GrowCount and GrowDirection of the parent Branch.

https://pypi.org/project/GenProcTrees/
http://dx.doi.org/10.2312/NPH/NPH07/063-070
http://dx.doi.org/10.2312/NPH/NPH07/063-070

7. Repeat from step 4 until there are no Leaves left, or no more Branches are growing.

To generate these trees, we need a set of parameters that define the number of leaves, their
placement, and attributes of the branches. These parameters include:

1. min_distances: minimum distance allowed between two leaves

2. max_distances: minimum distance allowed between two leaves

3. branch_lengths: maximum length of the branches

4. turn_factors: how often the branches turn, separates lengthy trees from wiry trees
5. leaf_starts: how far up the stem do leaves start

6. number_of leaves: total number of leaves in the tree

We use a uniform distribution to generate 6 different possible values for all 6 of these
parameters, and find all the possible combinations of these values to get the set of all possible
configurations. In total, we have 6° = 46,656 sets of parameters to choose from when generating
a tree. Following table shows the range and increments of each variable:

Variable Minimum value Maximum value Increment
min_distances 0.02 0.05 0.005
max_distances 0.2 0.5 0.05
branch_lengths 0.01 0.075 0.005
turn_factors 0.06 0.64 0.05
leaf_starts 0.20 0.37 0.03
number_of leaves 310 400 15

Given n number of trees to be generated, we randomly choose n configurations without
replacement and use them as parameters to generate the trees. GenProcTrees generates the
tree in the form of an image, which we then convert to an array to pass through our CA model.
In the initial tree array, 0 refers to an empty cell (or pixel) and 1 refers to a branch.

Some examples of the trees generated:

CA

Using our conceptual model and the parameter combinations outlined above, we created 20
trees of varying shapes, then ran three trials of our CA implementation on each tree. For each
trial, we calculated the percentage of the tree that ended up dead or infected after 100
timesteps, then averaged these scores to get an overall score for the tree.

Each tree begins completely healthy, but disease is introduced either at random locations —
simulating pest-induced diseases, for example — or at the roots — a starting place for root rot.

Visualization

After each step of the simulation, we map the cell values (or pixel values) to the following colors
in order to visualize the state of the tree.

Pixel Value State Color

0 Empty Blue

1 Healthy Brown

2 Infected Yellow

3 Dead Red

4 Barrier Cell Lavender
5 Wall Cell White

6 Airborne Infected Orchid

7 Airborne Dead Black

Below are some examples:

In addition to this, we also create a GIF to summarily visualize the evolution of a tree through
different steps in the CA model.

Experimental results and validation

To obtain quantitative results for our model, we run 20 different simulations, where each
simulation is run on a different tree shape. The input parameters for tree generation are tweaked
in each trial, ensuring that several types of tree growth and branching are accounted for. As can
be seen from above, each tree has a different height, width, number of leaves, branch length,
etc. For each simulation, the “score” of the tree, or the percent of pixels that were infected by
the disease, (as stated in the Conceptual Model section) is calculated and ranked. It can be
seen that trees with branches with long branches, large turn factors, and a smaller number of
leaves are less susceptible to disease spread than trees with shorter branches, a larger number
of leaves, and orthogonal branches. Our full results can be seen in the table below.

Tree ID min_distances max_distances branch_lengths turn_factors leaf_starts number_of_leaves Height
1 0.0237295 5 0.03 0.4 0.065 0.61 0.32 310 514 603
2 0.02683912 18 0.02 0.35 0.065 0.61 0.32 355 508 574
3 0.02723403 11 0.02 0.35 0.06 0.36 0.32 310 522 514
4 0.02968247 13 0.03 0.4 0.07 0.56 0.23 340 520 615
5 0.03164093 7 0.03 0.35 0.055 0.56 0.26 340 511 540
6 0.03207973 2 0.04 0.3 0.02 0.31 0.35 385 506 609
7 0.03246206 14 0.035 0.25 0.02 0.31 0.29 370 507 587
8 0.03496937 15 0.025 0.25 0.02 0.21 0.2 355 511 639
9 0.03736436 8 0.03 0.45 0.02 0.11 0.32 385 515 667
10 0.03921376 4 0.045 0.25 0.025 0.41 0.26 340 505 519
11 0.04079978 6 0.045 0.35 0.04 0.36 0.26 340 523 469
12 0.04365584 1 0.03 0.35 0.03 0.21 0.29 370 516 585
13 0.04546537 12 0.045 0.25 0.055 0.31 0.23 340 524 599
14 0.04568995 3 0.045 0.3 0.015 0.61 0.23 340 445 519
15 0.04995473 17 0.02 0.4 0.07 0.36 0.2 370 525 558
16 0.05113221 10 0.02 0.35 0.045 0.21 0.32 340 526 642
17 0.05360277 19 0.045 0.4 0.035 0.41 0.29 310 510 510
18 0.06114744 16 0.02 0.4 0.01 0.36 0.32 340 404 427
19 0.0655192 0 0.045 0.4 0.04 0.11 0.32 355 531 672
20 0.07421116 9 0.045 0.4 0.05 0.26 0.26 325 526 574

Our access to validation data, though, was sparse. As our model is novel- there are no publicly
available simulations dealing with disease spread on individual trees- there exist only
approximated statistics to compare its results with. The University of California’s Integrated Pest
Management Program (UC IPMP) states that blight bacteria can spread up to 3 feet from its
point of infection on a tree’s surface (2019).

Using this statistic, we can validate our study with some clever calculations. We assume that

each pixel in each image represents 0.025 feet. To get the surface area (in ftz) of each tree, we
multiply its height by its width (after converting pixels to feet). Then, to get the total area of the
tree infected, we multiply the surface area of the tree by its score. From this, we can get the
average spread of infection width (average infection size) by dividing by 5 (number of infection
sites per tree on average). The workflow for this is as follows:

(1) Tree surface area = (height * 0.025) * (width * 0.025)
(2) Total area infected = (Tree surface area) * score,

(3) Average infection area = (Total area infected) /5

The area per infection for each ranked tree can be seen in the table below.

Tree Rank Area per infection (ftz)
1 0.91934628
2 0.9782591
3 0.91338863
4 1.18655658
5 1.09137463
6 1.23568714
7 1.20762505
8 1.42731408
9 1.60435576

10 1.28471641
1 1.25095693
12 1.64724412
13 1.78381089
14 1.31904032
15 1.82927959
16 2.15836748
17 1.74276011
18 1.31855274
19 2.92241838
20 2.80076634

In 17 of our 20 trial simulations (85%), we observed that infections, on average, spread between
1 and 3 feet from their points of origin. A 99% confidence interval on our data is [1.21, 1.85],
indicating that the maijority of trees in our system will have average infection sizes of between

1.21 and 1.85 ftz, which is within the range stated by UC IPMP.

Despite the lack of resources available to validate our system, we can say that our simulations
were roughly valid as there is a correlation between our hypothetical results and real-life
measured data.

Discussion and conclusions

Based on the scored trees, the most noticeable observation is that trees that have child
branches that fork more orthogonally tend to have better scores. For example, in one simulation
run, the tree below on the left had the best score of 3.41% infected and the one on the right had
the worst score of 7.91% infected.

However, the scoring metric may be biased in favor of trees that are larger and start with more
"healthy" cells.

We also found that maximizing the distance between branches seems to be ideal, though there
is a lot of variance in our results, so further investigation may be required.

x
0.07
x
0.06 - X
x
0.05 - X x
x x X
L0041 x X .
o %
003 1 - :
0.02
0.01 -
0.00

0.2'50 0.2'75 0.3'00 0.3'25 0.3'50 0.3'75 0.4'00 0.4'25 0.4'50
Maximum Distance

Otherwise, looking at the individual impact of tree shape properties was not very informative.
Below are Score vs. Property plots for turn factor and tree width respectively.

Score

Score

Evaluating the effectiveness of tree shape turned out to be a quite difficult task, requiring visual
comparison in addition to parameter comparison. In future iterations, we would hopefully be able
to develop other metrics of scoring, which can be refined as more real data becomes available

01

0.2

T

03

04
Turn Factor

05 0.6

450

600 650

Width

on fruit tree infection spread.

Future Work

One virtue of our model is that it is easily extensible; simulating other specific diseases requires
only a few modifications and a new CA child class. However, many of the diseases that one
may want to simulate involve infection of not only the branches, but also the roots and leaves of
a tree. To support a wider scope of disease, it would be prudent to add leaves and a root system

to our model and visualizations.

References

Anderson, Taylor, and Suzana Dragicevic. “A Geosimulation Approach for Data Scarce
Environments: Modeling Dynamics of Forest Insect Infestation across Different
Landscapes.” ISPRS International Journal of Geo-Information, vol. 5, no. 2, 2016,
https://www.mdpi.com/2220-9964/5/2/9.

“Compartmentalization of Decay in Trees.” Wikipedia, 10 Mar. 2022,
en.wikipedia.org/wiki/Compartmentalization_of _decay_in_trees.

Douglas, Sharon M. “Pruning: An Introduction to Why, How, and When.” The Connecticut
Agricultural Experiment Station, 2022,
https://portal.ct.gov/CAES/Fact-Sheets/Plant-Pathology/Pruning-An-Introduction-to-Why-
How-and-When.

“Fruit Tree Forms.” Wikipedia, 8 Nov. 2021, en.wikipedia.org/wiki/Fruit_tree forms. Accessed 30
Mar. 2022.

Gronewold, Anja, and Michael Sonnenschein. “Event-based modelling of ecological systems
with asynchronous cellular automata.” Gale Research, 1997,
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.50.9347&rep=rep1&type=pdf.

Huang, Mingxiang, et al. “A Cellular Automata Model of Pine Wilt Disease Spread and Its
Simulation Tool for Application.” National Conference on Information Technology and
Computer Science, 2012, h J//www.atlantis-press.

Shigo, Alex L. “Compartmentalization of Decay in Trees.” Scientific American. 152 (4): 96-103.,
vol. 152, 1985, pp. 96—-103.

Teviotdale, B L. “How to Manage Pests.” UC IPM Online, 2019,
http://ipm.ucanr.edu/PMG/PESTNOTES/pn7414.html.

“Trichovirus.” Wikipedia, 16 May 2021, en.wikipedia.org/wiki/Trichovirus. Accessed 30 Mar.
2022.

University of Georgia CAES. “Diseases - Research | Peaches.” Peaches.caes.uga.edu,
University of Georgia, peaches.caes.uga.edu/research/diseases.html. Accessed 30 Mar.
2022.

https://www.mdpi.com/2220-9964/5/2/9
https://portal.ct.gov/CAES/Fact-Sheets/Plant-Pathology/Pruning-An-Introduction-to-Why-How-and-When
https://portal.ct.gov/CAES/Fact-Sheets/Plant-Pathology/Pruning-An-Introduction-to-Why-How-and-When
http://en.wikipedia.org/wiki/Fruit_tree_forms
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.50.9347&rep=rep1&type=pdf
https://www.atlantis-press.com/article/3195.pdf
http://ipm.ucanr.edu/PMG/PESTNOTES/pn7414.html
https://en.wikipedia.org/wiki/Trichovirus
http://peaches.caes.uga.edu/research/diseases.html

